
 1

Stream Memory Subsystem in Reconfigurable
Platforms

Sek M. Chai, Nikolaos Bellas, Malcolm Dwyer, Dan Linzmeier
 Embedded Systems Research Center, Motorola Labs,

(sek.chai@motorola.com)

Abstract— High performance computing platforms require an
efficient memory subsystem to keep processors busy. This paper
proposes a memory hierarchy using stream units to move stream
data between memory and processors. The stream units prefetch
and align data based on stream descriptors, a mechanism that
allows programmers to indicate data movement explicitly by
describing their memory access patterns. The memory hierarchy
is configured on reconfigurable logic based on application needs.
This paper presents an example stream unit design with
preliminary synthesis results.

Index Terms—Stream processing, memory hierarchy,
memory burst.

I. INTRODUCTION
econfigurable systems offer flexible platforms in which
to optimize a memory subsystem for single application or

a class of applications. While architectural research on FPGA
have been partial to processor designs, the same flexibility
and performance offered by today’s FPGAs are equally
suitable for the memory subsystem design. As the
performance disparity between processor and memory
intensifies [1], high performance or real-time application
performance continues to be limited by the memory
subsystem [2]. Consequently, studies on efficient memory
subsystems should be considered alongside the processor
design as memory performance must be scrutinized on new
reconfigurable architectures.

While FPGA platforms continue to provide a larger
number of configurable logic blocks that can be mapped to
processing elements to satisfy computing demands, the
interconnect delays and relatively slower memories maintain
an imbalance between processor and memory performance.
Traditional approaches to compensate for poor memory
performance such as caches are not effective due to poor
temporal locality of data for streaming data [3], especially
when large memory buffers are not available on FPGA
platforms. Data duplication on distributed memory buffers is
also not effective as the chip area can be better utilized for
processing.

This paper presents a flexible memory subsystem for
stream computation. The memory subsystem builds upon
configurable stream units that move data while computation is
performed. The stream units are specialized DMA units that
are optimized for stream data transfer. They rely on a set of
stream descriptors, which defines the memory access pattern,
to prefetch and align data in the order required by the

computing platform. In using the stream units in the memory
subsystems, the architecture effectively decouples the
communication from computation, and allows hardware
designers to address their implementation and optimization
individually. The stream units take advantage of available
bandwidth by prefetching data before it is needed, and
consequently, the system performance becomes dependent on
average bandwidth of the memory subsystem with less
sensitivity to peak latency to access a data element.

II. RELATED WORK
The streaming programming model separates

communication from computation, allowing either
programmer or compiler to specify each portion
independently [4]. Properties of streaming model of
computation include:
• Computations kernels are independent and self contained

Computation kernels are localized such that there are no
data dependencies between other kernels. A programmer
can annotate portions of a program that exhibit this
behavior for mapping onto a stream processor or
accelerator.

• Computation groups are relatively static
The processing performed in each computation group is
regular or repetitive, which often come in the form of a
loop structure. There are opportunities for compiler
optimization to organize the computation as well as the
regular access patterns to memory.

• Explicit definition of communication
Computation kernels produce an output stream from one or
more input streams. The stream and other scalar values
which hold persistent application state are identified
explicitly as variables in a communication stream or signal
between kernels.

• Data movement exposed to programmer
A programmer can explicitly define movement of data from
memory or to other computation kernels. Hardware
mechanisms such as a DMA or stream unit provide this
capability without interrupting the processor. The stream
processing model seeks to either minimize data movement
by localizing the computation, or to overlap computation
with data movement. Furthermore, the programmer can
retune the application memory access as memory
bottlenecks arise.

 R

 2

There is a number of streaming processor architectures
developed over recent years. Examples of stream processors
include RAW [5], Imagine [6], Merrimac [7], and the
RSVP™ architecture [8,9]. There is also another class of
streaming architectures with origins from reconfigurable
platforms such as FPGA. These architectures rely on the
flexibility of the platform to synthesize streaming accelerators
based on programmer definition. In comparison to the above
mentioned architectures, a set of compiler tools create
optimized hardware configurations rather than map
computation onto existing design. They are associated with
the programming language or compiler tool that allows
software developers to configure hardware for stream
computation. Examples include SCORE [10], ASC [11], and
Streams-C [12].

While each approach is different, stream architectures
provide hardware mechanisms that can configure their
datapaths for different types of parallelism in stream
computation. Furthermore, they include programmable
communication infrastructure to move data based on
programmer defined API. In this paper, we propose the use of
stream descriptors [8,9] for use in a reconfigurable FPGA
platform to generate an optimized memory subsystem. Stream
descriptors are a language extension to specify memory
access patterns, which is used by dedicated stream units to
prefetch and assemble data. The programmer describes the
computation independently from stream descriptors, and then
a compiler synthesizes the proper hardware for stream
processing.

III. STREAM MEMORY HIERARCHY
A design framework is being developed to automatically

generate synthesizable streaming accelerators [13]. Using
stream programming languages [9,14,15,16] which includes
programmer’s explicit definition of streams and their
movement, an integrated memory subsystem can be built.
This approach selects designs from well-engineered
framework consisting of accelerators and network rather than
generating hardware from a generic representation of a high
level language [17].

The memory subsystem builds upon stream units that
moves data based on stream descriptors, as shown in Figure
1. Single or multiple accelerators in various configurations
can be built. Furthermore, systems with multiple scalar
processors, bus, peripherals or memory controllers can be
configured such that the stream unit and accelerator are
placed appropriately according to the flow of data. Stream
descriptors have been recently applied to stream processors
[8,9] and peripherals [18,19] to leverage on the deterministic
movements of data from memory. In this paper, the stream
descriptors are applied to the entire memory subsystem so as
to enable stream data movement throughout the computing
platform.

The goal of this research is to generate an optimized
memory subsystem based on stream programming input. As
data stream type and movement are explicitly defined, there
are opportunities to optimize the memory subsystem by
prefetching and overlapping movement with computation. By
distributing stream units throughout the memory subsystem,
the design framework avoid large cache mechanisms that are
not efficient for streaming computation and are difficult to
synthesize on FPGAs.

Scalar
Processor

Stream Unit

Streaming
Accelerator

Memory
Controller

PLB

Scalar
Processor

Stream Unit

Streaming
Accelerator

Memory
Controller

PLB

Stream Unit

Streaming
Accelerator

Scalar
Processor0

Stream Unit

Streaming
Accelerator

Memory
Controller0

PLB0

Scalar
Processor1

Memory
Controller1

PLB1

(a) (b) (c)

Scalar
Processor

Stream Unit

Streaming
Accelerator

Memory
Controller

PLB

Scalar
Processor

Stream Unit

Streaming
Accelerator

Memory
Controller

PLB

Scalar
Processor

Stream Unit

Streaming
Accelerator

Memory
Controller

PLB

Stream Unit

Streaming
Accelerator

Scalar
Processor

Stream Unit

Streaming
Accelerator

Memory
Controller

PLB

Stream Unit

Streaming
Accelerator

Scalar
Processor0

Stream Unit

Streaming
Accelerator

Memory
Controller0

PLB0

Scalar
Processor1

Memory
Controller1

PLB1

Scalar
Processor0

Stream Unit

Streaming
Accelerator

Memory
Controller0

PLB0

Scalar
Processor1

Memory
Controller1

PLB1

(a) (b) (c)

Figure 1. Stream memory subsystem, (a) single accelerator,
(b) multiple accelerators, (c) alternative configurations

This following section describes the stream descriptors
used to capture stream access patterns in memory.
Furthermore, an example stream unit design is described with
preliminary results from synthesis.

A. Stream Descriptors
Stream descriptors are mechanisms to allow the

programmer to describe the shape and location of data in
memory. Dedicated stream units can then utilize the stream
descriptors to prefetch data from memory for the computing
platform. Each stream unit handles all issues in
loading/storing of data: address calculation, byte alignment,
data ordering, and memory bus interface. A compiler can also
schedule the loading of a stream descriptor that is dependent
on run time values.

A stream descriptor is represented by the tuple (Type,
Start_Address, Stride, Span Skip, Size) where:
• Type indicates how many bytes are in each element (Type

is 0 for bytes, 1 for 16-bit half-words, etc.)
• Start_Address represents the memory address of the first

stream element.

 3

• Stride is the spacing, in number of elements, between two
consecutive stream elements.

• Span is the number of elements that are gathered before
applying the skip offset

• Skip is the offset is applied between groups of span
elements, after the stride has been applied

• Size is the number of elements in the stream
The Stride, Span, Skip, and Type fields define the shape of

a data object. The grouping and order in which data is
accessed defines a Stream Record and corresponds to the
preferred alignment of the computation kernel. Stream
records can be processed in parallel by hardware accelerators
and this explicit alignment of the data facilitates their
hardware implementation by eliminating packing and
unpacking instructions. Multidimensional or even non-
regular spaces can be created by extending the defined
semantics of each stream descriptor field. More details are
available in [8,9].

B. Stream Unit
The stream unit consists of one or more input and output

stream modules, which are generated to match the needs of
the streaming accelerators. In Figure 2, there are two input
and one output stream modules. The stream unit is used to
transfer data from a system memory or peripheral, and present
them in-order to the streaming accelerator. It also transfers
processed data back to other memory locations.

The following paragraph describes internal operations of
the input stream module. The address generation unit (AGU)
generates bus addresses based on stream descriptor values
and stores pending requests in a queue (Addr Queue). The
AGU has similar functionality to [20] but with more robust
stream descriptors that allows for different bit-widths and
more complex access patterns. The Addr Merge unit then
selects the next bus address to issue, while removing

duplicate bus addresses. Data is then stored in the line buffer
when the PLB bus returns data from memory. A Tag unit
selects stream elements from the line buffer for storage into a
stream buffer queue. Data is then presented to the streaming
accelerator as aligned data, in the order defined by the stream
descriptor.

The output stream module consists of similar internal
components, but data flows in the opposite direction.
Processed data is first stored in stream buffers, which are
selected for transfer by the Tag unit. A line buffer holds the
set of selected stream data which can be stored at a specified
bus address, stored in the Addr unit.

The stream unit can be configured to match application
requirements based on stream descriptor values, and
characteristics of the bus-based system and streaming
accelerators. For example, the number of storage elements
(stream buffers) and their sizes (bit-width) are selected based
on the stream descriptor values and requested bandwidth of
the streaming accelerator (stream bandwidth) so that the
stream module can provide the maximum number of stream
elements requested per cycle. Furthermore, the Address
Queue buffer size is selected based on the maximum number
of pending requests supported by the bus. The bus line buffer
size is set based on bus bandwidth and bursting schemes. This
would allow maximum saturation of the bus that can pipeline
transfer requests from the memory controller or peripherals.
Finally, the address generation unit can be hardwired to
generate the memory access patterns based on stream
descriptors.

Table 1 shows the preliminary synthesis results for
different configurations of the stream unit. The resulting
clock speeds is about 130MHz on the selected Xilinx FPGA
device. In general, the larger the buffer sizes, the larger the
stream unit. For larger bit-width parameter, the stream unit
gate count can actually decrease due to reduced logic to
handle multiple bytes within a 32bit word. The current logic
circuits can be further optimized by restructuring the logic in
Tag unit which compares against the bus address in Addr
Queue unit when accessing the line buffer.

IV. CONCLUSION AND FUTURE WORK
This paper presents a configurable stream unit for use in a

stream memory hierarchy. The stream unit prefetches and
aligns data for streaming accelerators based on a set of stream
descriptors, which defines the data shape and location.
Preliminary synthesis results on the different configurations
are shown.

Future work for the stream unit includes further
optimization and use of the design in a full memory
subsystem. Benchmarking on applications can be performed
with a suite of applications. Integration with streaming
peripherals[18] and a high performance memory controller
would improve performance. There are additional research
areas in integrating streaming descriptors within a streaming
language and compiler infrastructure.

Input Stream1

Output Stream

bridge

addr

data_in

PLB
Addr

data
data_out

Control
Registers

Arbiter

Stream
Buffer

Tag ValidAGU

Line
Buffer

Stream
Buffer

Data
Align

AGU ReadyTag

Line
Buffer

Addr
Queue

Addr

Addr
Merge

Request/Grant

Input Stream2

Request/Grant

Request/Grant

Input Stream1

Output Stream

bridge

addr

data_in

PLB
Addr

data
data_out

Control
Registers

Arbiter

Stream
Buffer

Tag ValidAGU

Line
Buffer

Stream
Buffer

Data
Align

AGU ReadyTag

Line
Buffer

Addr
Queue

Addr

Addr
Merge

Request/Grant

Input Stream2

Request/Grant

Request/Grant

Figure 2. Stream unit block diagram

 4

[9] S. M. Chai, S. Chiricescu, R. Essick, A. López-Lagunas, B. Lucas, P.
May, K. Moat, J. Norris, M. Schuette, “Streaming Processors for Next
Generation Mobile Imaging Applications,” to appear in IEEE
Communications Magazine, Special Topics in Circuits for
Communication Series (Mobile Multimedia), Dec 2005

Table 1. Preliminary implementation results1
Address queue
buffer2

Input stream
buffers3

Input stream
bit-width4

Output stream
bit-width5

Input stream
bandwidth6

Output stream
bandwidth7

2 1779 8 1862 8 1862 8 1862 1 1862 1 1862
4 1862 16 2350 16 1744 16 1863 2 1878 2 1869
8 2050 32 3209 32 1605 32 1863 4 1915 4 1930
16 2072 8 1956
1All data given in number of slices in the Xilinx 4vfx140ff1760-11 device
2 Input/output buffer = 8, input/output bit-width = 8, input/output bandwidth = 1
3 Address queue buffer = 4, input/output bit-width = 8, input/output bandwidth = 1
4 Address queue buffer = 4, input/output buffer = 8, input/output bandwidth = 1
5 Address queue buffer = 4, input/output buffer = 8, input/output bandwidth = 1
6 Address queue buffer = 4, input/output buffer = 8, input/output bit-width = 8
7 Address queue buffer = 4, input/output buffer = 8, input/output bit-width = 8

ACKNOWLEDGMENT
The authors acknowledge previous contributions by

RSVP™ design team at Motorola Labs. Furthermore, the
authors extend thanks to Erica Lau for her invaluable
feedback that has greatly improved the different aspects
described in this paper.

[10] Eylon Caspi, Michael Chu, Randy Huang, Joseph Yeh, John
Wawrzynek, André DeHon. Stream Computations Organized for
Reconfigurable Execution (SCORE). Field Programmable Logic (FPL),
August 2000, pp. 605-614

[11] Oskar Mencer, David J. Pearce, lee W. Howes, Wayne Luk, “Design
Space Exploration with a Stream Compiler”, IEEE International
Conference on Field Programmable Technology (FPT), Tokyo,
December 2003

REFERENCES
[1] David A. Patterson, “Latency Lags Bandwidth,” Communications of the

ACM, vol.47, no.10, pp.71-75 October 2004. [12] Maya Gokhale, Jan Sone, Jeff Arnold, Mirek Kalinowski, “Stream-
Oriented FPGA Computing in the Streams-C High Level Language”,
IEEE Symposium on Field Programmable Custom Computing Machines
(FCCM), pp 49-56, 2000.

[2] W.A. Wulf, S. A. McKee, “Hitting the memory wall: implications of the
obvious,” ACM SIGARCH Computer Architecture News, Vol. 23, No.
1, March 1995, pp. 20-24.

[3] Parthasarathy Ranganathan, Sarita Adve, Norman P. Jouppi,
“Performance of image and video processing with general-purpose
processors and media ISA extensions,” Proceedings of the 26th Annual
International Symposium on Computer Architecture (ISCA’99), May
1999, pp. 124-135

[13] N. Bellas, S. Chai, M. Dwyer, and D. Linzmeier, “FPGA
implementation of a license plate recognition SoC using automatically
generated streaming accelerators,” submitted to Reconfigurable
Architecture Workshop 2006.

[14] Ian Buck, “Current Brook Specification (0.2),” October 31, 2003.
http://merrimac.stanford.edu/brook/brookspec-v0.2.pdf [4] Saman P. Amarasinghe; William Thies, “Architecture, languages and

compilers for the Streaming Domain,” PACT 2003 Tutorial.,
http://cag.lcs.mit.edu/wss03/. [15] William R. Mark; R. Steven Glanville; Kurt Akeley; Mark J. Kilgard,

“Cg: a system for programming graphics hardware in a C-like
language,” July 2003 ACM Transactions on Graphics (TOG), Volume
22 Issue 3.

[5] Michael Bedford, et al, “Evaluation of the Raw microprocessor: An
exposed-wire-delay architecture for ILP and streams,” Proceedings of
the 31st Annual International Symposium on Computer Architecture
(ISCA’04), June 2004, pp. 2-14. [16] P. Mattson, B. Thies, L. Hammond, M. Vahey “Streaming Virtual

Machine Specification,” Morphware Forum, Version 1.0 July 19, 2004
[6] Scott Rixner, William J. Dally, Ujval J. Kapasi, Brucek Khailany,

Abelardo López-Lagunas, Peter R. Mattson, John D. Owens, “A
bandwidth-efficient architecture for media processing,” Proceedings of
the 31st annual ACM/IEEE International Symposium on
Microarchitecture, November 1998, pp. 3-13.

[17] Handel-C. Language Reference Manual, /www.celoxica.com /
[18] S. M. Chai and A. López-Lagunas, “Streaming I/O for Imaging

Applications”, IEEE International Conference on Computer
Architecture for Machine Perception, July 2005, pp. 178-183.

[19] A. López-Lagunas and S. M. Chai, “Memory Bandwidth Optimization
through Stream Descriptors”, Memory Performance: Dealing with
Applications, Systems and Architecture (MEDEA) Workshop, St.
Louis, Missouri, September 2005, pp. 59-66.

[7] William J. Dally; Patrick Hanrahan; Mattan Erez; Timothy J. Knight;
François Labonté; Jung-Ho Ahn; Nuwan Jayasena; Ujval J. Kapasi;
Abhishek Das; Jayanth Gummaraju; Ian Buck, "Merrimac:
Supercomputing with streams", Proceedings of the SuperComputing
SC’03 Conference, November 2003, Phoenix, Arizona, pp. 35-43. [20] Kjetil E. Vistnes, Oddvar Sorasen, “Reconfigurable Address Generators

for Stream-Based Computation Implemented on FPGAs,”
Reconfigurable Architecture Workshop 2005. [8] S. Chiricescu, R. Essick, B. Lucas, P. May, K. Moat, J. Norris, M.

Schuette, and A. Saidi, "The Reconfigurable Streaming Vector
Processor (RSVP™)," Proceedings of the 36th International
Symposium on Microarchitecture, December 2003, pp. 141-150.

RSVP™ is a trademark of Motorola Inc. Other product names are the
property of their respective owner. A patent is pending that claims aspects of
items and methods described in this paper.

	I. INTRODUCTION
	II. Related Work
	III. Stream Memory Hierarchy
	A. Stream Descriptors
	B. Stream Unit

	IV. Conclusion and Future Work

